
HEADLINE: EXPORTING LARGE SHAREPOINT LISTS – IT’S EASIER THAN YOU THINK

Exporting SharePoint list to Excel or CVS is one of the requirements we get from our customers time and time

again.

Typically, we address this by opening Excel and importing data from SharePoint Online. We will go through details

later but first; let’s see why this approach has one HUGE problem and by HUGE we mean HUGE.

The problem

Let’s have a look at the followi g sce ario…

We have used the Excel Import method and only started to get data from the SharePoint Online list and after

about 105 minutes:

7815 rows loaded out of 32932. Do the math and you will have an idea how much time it will take. MS

documentations states that we can have 30 million items in a list, so in our scenario with 32932 rows we are

working with only 0.1 percent of the limit.

https://support.office.com/en-us/article/SharePoint-Online-limits-8f34ff47-b749-408b-abc0-b605e1f6d498
https://support.office.com/en-us/article/SharePoint-Online-limits-8f34ff47-b749-408b-abc0-b605e1f6d498

 | 2

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

Now do you see what we mean by HUGE???

The solution

To export a list with large volume of data, we return to the trusted PowerShell and CSOM.

Don’t get us wrong, when list data is not too big, we prefer importing data to Excel but when data volume is very

large, we will be using PowerShell and CSOM.

So let’s see the first method … Excel Import

Let’s start with importing SharePoint Online list data to Excel. Start Excel and go to select Data tab. Click on Get

Data -> From Online Services -> From SharePoint Online List .

Pop up will appear with the heading SharePoint lists . It’s a little misleading so don’t get fooled by the heading

and enter URL of your SharePoint Online site, not the URL of SharePoint Online list.

 | 3

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

The following Pop up will confirm that you are on the right track

Once connected you will see all your available lists

 | 4

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

 | 5

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

Select desired list and data will appear in preview window

 Click on Load and the a pop up will appear

 | 6

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

Eventually, you will be able to see the data from the SharePoint Online list in Excel. Don’t be alarmed by all the

data that appeared in Excel. Go to Query tab under Query Tools and click on Edit .

Query Editor window will appear. Scroll horizontally and find column FieldValuesAsText .

 | 7

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

Make sure FieldValuesAsText is selected and click on Remove Columns -> Remove Other Columns . This will

remove all columns from Query Editor .

 | 8

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

Once all columns are removed, click on the right corner on FieldValuesAsText and the following will appear:

Select the columns that you need. Excel will take time to load and you will have all columns from the SharePoint

List along with the relevant data. Rename the columns as needed and click Save & Load . This will take time as

Excel will update itself based on the changes made and we have imported data from SharePoint Online list to

Excel.

TIP: One little tip about the Query Settings window. This view displays all the changes performed in sequential

order so can undo any change at any point!

 | 9

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

This approach works fine when we are working with small data size but takes a lot time with each step added in

Query Settings. One way to try and speed this up is to not add any steps in Query Settings and try to with work

with the data populated in Excel from the SharePoint Online list in first place. Again, this works OK for smaller

data volumes.

The Other ethod… PowerShell

Other way that works much better for larger data volumes is to write a PowerShell script and export data from

SharePoint Online list to CSV or Excel. We will be using CSV format for simplicity.

1 First step is to make sure that Microsoft.SharePoint.Client.dll and

Microsoft.SharePoint.Client.Runtime.dll are at the following location:

Add-Type -Path "C:\Program Files\Common Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.Client.dll" -ErrorAction Stop
Add-Type -Path "C:\Program Files\Common Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.Client.Runtime.dll" -ErrorAction Stop

2 Now, let’s record the values of the following parameters to get the context of SharePoint Online site:

$username = "XXXXXX"
$userPassword = "XXXXXXXXX"
$siteURL = "XXXXXXX"
$listtitle = "XXXXXX"

3 We will be using the following CAML query which will have OOTB columns. We can add as many columns as

desired

$qCommand = @"
<View Scope="RecursiveAll">
 <Query>
 <OrderBy Override='True'><FieldRef Name='Modified' /></OrderBy>
 </Query>
 <ViewFields>
 <FieldRef Name='Modified' /><FieldRef Name='Created' />
 </ViewFields>
 <RowLimit Paged="TRUE">5000</RowLimit>
</View>
"@

4 Accessing SharePoint Online site and list in script below

 | 10

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

$secpasswd = ConvertTo-SecureString $userPassword -AsPlainText -Force
$context = New-Object Microsoft.SharePoint.Client.ClientContext($siteURL)
$context.Credentials = New-Object
Microsoft.SharePoint.Client.SharePointOnlineCredentials($UserName, $secpasswd)

$list = $context.Web.Lists.GetByTitle($listtitle)
$context.Load($list)
$context.ExecuteQuery()

5 A couple of important parts of the script:

A First is $position variable which will store the current position

B and $itemsinfo is array of PSObject

$position = $null
$itemsinfo = @()

 | 11

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

6 We will be using Do Until loop and will be terminating when $position variable is null and adding data in

$itemsinfo

Do
{
 $camlQuery = New-Object Microsoft.SharePoint.Client.CamlQuery
 $camlQuery.ListItemCollectionPosition = $position
 $currentCollection = $list.GetItems($qCommand)
 $context.Load($currentCollection)
 $context.ExecuteQuery()

 $position = $currentCollection.ListItemCollectionPosition

 foreach($listitem in $currentCollection)
 {
 try
 {
 $fieldvalue = @{
 Created =
[System.TimeZoneInfo]::ConvertTimeFromUtc($listitem["Created"], $TZ)
 Modified =
[System.TimeZoneInfo]::ConvertTimeFromUtc($listitem["Modified"], $TZ)
 }
 }catch
 {
 Write-Host $_
 }

 $itemsinfo += New-Object psobject -Property $fieldvalue
 }
}
Until($position -eq $null)

7 Last step is to create CSV file

$itemsinfo | Select-Object Created, Modified | export-csv
"C:\DataFromSharePointOnlineList.csv" -NoTypeInformation

 | 12

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

…and the full script…

Add-Type -Path "C:\Program Files\Common Files\microsoft shared\Web Server Exten-
sions\15\ISAPI\Microsoft.SharePoint.Client.dll" -ErrorAction Stop
Add-Type -Path "C:\Program Files\Common Files\microsoft shared\Web Server Exten-
sions\15\ISAPI\Microsoft.SharePoint.Client.Runtime.dll" -ErrorAction Stop

$strCurrentTimeZone = (Get-WmiObject win32_timezone).StandardName
$TZ = [System.TimeZoneInfo]::FindSystemTimeZoneById($strCurrentTimeZone)

$username = "XXXXXX"
$userPassword = "XXXXXXXXX"
$siteURL = "XXXXXXX"
$listtitle = "XXXXXX"

$qCommand = @"
<View Scope="RecursiveAll">
 <Query>
 <OrderBy Override='True'><FieldRef Name='Modified' /></OrderBy>
 </Query>
 <ViewFields>
 <FieldRef Name='Modified' /><FieldRef Name='Created' />
 </ViewFields>
 <RowLimit Paged="TRUE">5000</RowLimit>
</View>
"@

$secpasswd = ConvertTo-SecureString $userPassword -AsPlainText -Force
$context = New-Object Microsoft.SharePoint.Client.ClientContext($siteURL)
$context.Credentials = New-Object Microsoft.SharePoint.Client.SharePointOnlineCre-
dentials($UserName, $secpasswd)

$list = $context.Web.Lists.GetByTitle($listtitle)
$context.Load($list)
$context.ExecuteQuery()

$position = $null
$itemsinfo = @()
Do
{
 $camlQuery = New-Object Microsoft.SharePoint.Client.CamlQuery
 $camlQuery.ListItemCollectionPosition = $position
 $currentCollection = $list.GetItems($qCommand)
 $context.Load($currentCollection)
 $context.ExecuteQuery()

 $position = $currentCollection.ListItemCollectionPosition

 foreach($listitem in $currentCollection)
 {
 try
 {
 $fieldvalue = @{
 Created = [System.TimeZoneInfo]::ConvertTimeFromUtc($listitem["Cre-
ated"], $TZ)
 Modified = [System.TimeZoneInfo]::ConvertTimeFromUtc($listitem["Modi-
fied"], $TZ)
 }
 }catch
 {
 Write-Host $_
 }

 $itemsinfo += New-Object psobject -Property $fieldvalue
 }
}
Until($position -eq $null)

$itemsinfo | Select-Object Created, Modified | export-csv "C:\DataFromSharePoin-
tOnlineList.csv" -NoTypeInformation

One last workaround if want to create Excel, following code will generate Excel from CSV

 | 13

Commercial in Confidence

COMMERCIAL IN CONFIDENCE

$excel = New-Object -ComObject excel.application
$excel.visible=$false
$excel.DisplayAlerts = $false

$reportOut = $excel.Workbooks.Add()
$wb = $excel.WorkBooks.Open("C:\DataFromSharePointOnlineList.csv")
$wb.Worksheets.Item(1).Name = "DataFromSharePointOnlineList"
$wb.Worksheets.Copy($reportOut.WorkSheets.Item(1))
$wb.Close(0)

$reportOut.worksheets.item("Sheet1").Delete()
$strdate = get-date
$filename = "C:\DataFromSharePointOnlineList.xlsx"
$reportOut.SaveAs($filename,[Microsoft.Office.Interop.Excel.XlFileFormat]::xlOpenXM
LWorkbook)
$reportOut.Close(0)
$excel.Quit()

